
Weaponised PDFs

Geraint Williams

Weaponised PDFs

Introduction

Geraint Williams, CISO, GRC International Group

• Taught Information Security, Ethical Hacking and Digital forensics

• Former Payment Card Industry Qualified Security Assessor

• Payment Card Industry Consultant

• Worked with breached companies

• Former Ethical Hacker

• Information security consultant

• Now Chief Information Security Officer

Objective

• To inform those who would like to know why clicking on an
attachment can be bad news for them and/or their employers

• To encourage penetration testers to learning and develop new
skills

• To encourage people to go into forensics and incident
investigation as it is rewarding and challenging

• To show students why learning about programming, protocols
and structures of documents and applications is important part
of their role.

Agenda

• Why weaponizing PDFs

• Creating weaponised PDFs

• Analysing weaponised PDFs

• Protecting yourself

• Any Questions

Malicious files intercept in 3 month period

Filetype Count

Word 490

PDF 50

Others 23

Excel 6

URL 5

EXE 4

Why weaponizing PDFs

What is a PDF

• PDF stands for Portable Document Format.

• The PDF format was originally developed by Adobe in the
early 1990s for the U.S. Federal Government to store its
legacy files.

• In 2008, they dropped this ownership and the PDF became
an open standard.

– PDF files are Compatible Across Multiple Platforms

– Compression of a PDF File is Substantial

– The Software to View PDF Files is Freeware

Why was it created

• In the early 90s, professional software used to create
graphics and documents resulted in unbearably large files,
especially when they had pictures, fonts, and other
graphical elements embedded.

• Remember that machines in this time had a tiny fraction of
the processing power of the computer you’re using,
meaning every bit of efficiency was vital.

The solution

• In an attempt to fix this, software developers started using
links to other resources on the computer.

• Say you used a special font in your document.

• Instead of saving all the data for this font inside your
document, it would pull the needed information from the
font’s installation folder on your computer.

• This reduced the load on the document file, making it
lighter.

Advantages of PDF

• PDFs allow for fine-tuned security settings.

• When you create a PDF, you can disable viewers’ ability to
print the document, leave comments on it, or copy its text.

• Thus, when governments and businesses put forms online,
they can heavily restrict them to prevent abuse.

• For more security, you can also password-protect a PDF.

Features of a PDF

• PDFs also work with fillable fields.

• A PDF creator can place highlighted blocks anywhere in a
document to show where they’d like a signer to add
information.

• Even if they’ve restricted editing, a viewer can still type
their name, address, and other pertinent info into these
fields.

• PDFs support electronic signing, so you can add your
consent to a document without having to print it out.

Continuing Use

• Minor features like adding comments, highlighting,
stamps, plus hyperlinks and other live content have kept
PDFs relevant into the current decade.

• Optical recognition software can capture documents and
easily turn them into PDFs, and some independent
publishers even put out books as PDFs.

• Its ease of use, solid feature set, and ubiquity has
enshrined the PDF into everyday computing life

PDF Ability

• The PDF has ability to deliver rich contents (static and dynamic)

• Combined, these elements can deliver a visually appealing,
interactive, and portable document

• While we have all benefited from this feature-rich information-
sharing venue, there exists a darker side

• The dynamic PDF capabilities mentioned above can and have
been used to house malicious content

• In previous years, cybercriminals embedded malicious script to
install malware and steal user credentials.

PDF malicious behaviour

• Normally, the PDF malware’s malicious behaviour is in a
script that is embedded in PDF files.

• The scripts that are responsible for malicious behaviour
can be written in a scripting language that PDF supports.
JavaScript is the most popular for this purpose.

• In most cases, the embedded scripts are responsible for
dropper functionality, or else there is a need to install an
OS-based malware on the victim’s system.

What makes PDF vulnerable

• The PDF format supports the following

– System Commands:

– Hidden Objects:

– Embedded Flash:

– Embedded Media Controls:

– Embed Any File:

Attackers

• Take advantage of the PDF document

• To exploit the viewing application

• As a stepping stone

• To exploiting a device

Threat model

Adobe
Reader

Vulnerabilities

Attack Vector

PDF
Document

Attacker

Threat agent Payload

Exploit

 Gullible employee

Malicious
code

Adobe Reader
exploit

Opens PDF
document

Vulnerable
version that
allows the
adobe exploit
to load
malicious
code that will
affect the
computer

Creates a
weaponised

PDF and sends
it to the victim

Acrobat Reader : Vulnerability Statistics

Kaspersky report 2018 Q2

In late March 2018, a PDF document was detected at VirusTotal that
contained two 0-day vulnerabilities: CVE-2018-4990 and CVE-2018-
8120.

The former allowed for execution of shellcode from JavaScript via
exploitation of a software error in JPEG2000 format image processor in
Acrobat Reader.

The latter existed in the win32k function SetImeInfoEx and was used
for further privilege escalation up to SYSTEM level and enabled the PDF
viewer to escape the sandbox.

An analysis of the document and our statistics show that at the
moment of uploading to VirusTotal, this exploit was at the
development stage and was not used for in-the-wild attacks.

Sophos report 2017 H1

PDF Format

Human view of a PDF

Hex editor view of a PDF file

Document structure

Relation view

PDF Structure

• The general structure of a PDF file is composed of the following
code components:

– Boolean values, representing true or false

– Numbers

– Strings

– Names

– Arrays, ordered collections of objects

– Dictionaries, collections of objects indexed by names

– Streams, usually containing large amounts of data

– The null object

Read from the end of the file

Sample object structures

Trailer Dictionary
Document Information
Dictionary

Actions within a PDF

• Execute a menu item

• Go to a 3d/multimedia view

• Go to a page view

• Import form data

• Multimedia operation

• Open a file

• Open a web link

• Play a sound

• Play media

• Read an article

• Reset a form

• Run a JavaScript

• Set layer visibility

• Show/hide a field

• Submit a form

Triggers within a PDF

• Mouse up

• Page visible

• Page invisible

• Page enter

• Page exit

• Mouse down

• Mouse enter

• Mouse exit

• On receive focus

• On lose focus

Features of a PDF

• JavaScript

• Launch actions

• Embedded files

• GoToE actions

• Embedded flash applications

• Encryption

• Parser “flexibility”

Creating weaponised PDFs

Creating a malicious PDF

• Two basic techniques

– Compromise an existing PDF by adding malicious code

• Technical the more complicated method

• Tools can help

• Produces a more authenticate package

• Malicious code more likely to be harder to find

– Programmatically create a PDF around malicious code

• Easier to do

• Tools can help

• PDF will be empty or very simple

• Easier to detect malicious code

Executing Malware with PDF

• When we open any malicious PDF file, it will execute a
trigger action and launch a script, command or file as
specified.

• The script, command or file will then often execute
additional payload from the PDF, from across the internet
or in another file

• and it exploits the JavaScript; after that, the shell code is
processed and a Trojan will be executed from the Internet.

Example trigger action

• ‘cmd.exe’ will be opened as soon as the file is opened.

Demo

• Create a blank pdf that contains an exploit and a payload

• Execute that payload using JavaScript as the file is opened

• Use a free tool designed for penetration testers

– ‘Dual use’ tools that can be used by hackers and testers alike

Our malicious attack

Target MachineAttacker Machine

CVE-2008-2992
util.printf() Vulnerability

Meterpreter reverse_tcpListener 4455

The Attack

• util.printf(“%45000.45000f” will cause a buffer overflow
executing code we have loaded into memory

• If we can load shellcode into memory in the right place the
buffer overflow will allow it to execute

• We will use a heap spray to get the code into the correct
location

• The shell code is a standard exploit form Metasploit that
opens a reverse connection to a remote machine

The attack

• Skill level: Newbie, scriptkiddie

• Toolset: Free – Metasploit, part of Kali

• Can be run on a £5 Raspberry Pi Zero

This vulnerability is 10 years old ☺

Please do not try this outside your own lab environment

Unlikely to succeed in the wild!

Create a Malicious PDF File with Metasploit

• The steps for creating our malicious PDF file are as follows:

• Open msfconsole

• Select an exploit, select a payload and set the options

• Once we have all the options set the way we want, we run
“exploit” to create our malicious file.

• We can see that our PDF file was created. You can access
this PDF by using the given path

Geek Alert: Heap Spray

• Heap spraying is a technique used in exploits to facilitate
arbitrary code execution

• In general, code that sprays the heap attempts to put a certain
sequence of bytes at a predetermined location in the memory
of a target process by having it allocate (large) blocks on the
process's heap and fill the bytes in these blocks with the right
values

• Heap sprays have been used occasionally in exploits since at
least 2001 but the technique started to see widespread use in
exploits for web browsers in the summer of 2005 after the
release of several such exploits which used the technique
against a wide range of bugs in Internet Explorer

Heap Spray (buffer overflow on steroids)
Memory

NOP Sled

Shellcode

NOP Sled

Shellcode

NOP Sled

Shellcode

A[4]

A[5]

A[6]

<script>
:
spray = build_large_nop_sled();

a = new Array();

for(i=0; i< 100; i++)
a[i] = spray + shellcode;

:
</script>
:
Exploit trigger condition goes here

CVE-2008-2992 Adobe util.printf() Buffer Overflow

• Stack-based buffer overflow in Adobe Acrobat and Reader
8.1.2 and earlier allows remote attackers to execute
arbitrary code via a PDF file that calls the util.printf
JavaScript function with a crafted format string argument

• Basically trying to print a number that has 45000 places in
front of the decimal point and 45000 places after the
decimal point (90kB of data)

util.printf(“%45000.45000f”)

Create a Malicious PDF File with Metasploit

Detection on submission to AV engines

Analysing weaponised PDFs

Signs of a malicious PDF

• A single page

• Inclusion of /JS or /JavaScript

• Use of /AA or /OpenAction to launch script without interaction

• Combination of automatic action and JavaScript is very
suspicious

• Use of JBIG2Decode requires further investigation

• /AcroForm can contain JavaScript

• Streams with unusually lengths ie 0 or very large

Analysis Environment

Windows

• PDF Stream Dumper

• Reneo

• Suite of Python tools

– pdfid.py

– peepdf.py

– pdf-parser.py

Linux

• Kali

• Remnux

• Suite of Python tools

– pdfid.py

– peepdf.py

– pdf-parser.py

Typical steps

• Find and Extract Javascript

• Deobfuscate Javascript

• Extract the shellcode

• Create a shellcode executable

• Analyze shellcode and determine what is does

Structure of Malicious.pdf

• PDF files consist of tree structure of
objects

• The last object (Trailer) is read first
to find the location of other objects

• If can contain multiple trees if had
objects added, or linearised

Object 1
Catalog

Object 2
Outlines
No outlines

Object 3
Pages (Parent)
Only 1 child

Object 4
Content (Kids)
Mediabox

Object 5
Open Action
Call JavaScript on opening

Object 6
Javascript

Object 0
Cross Reference Table
Trailer
EoF

Catlog
Defines Outlines, pages and what to do on opening of PDF
OpenAction goto object 5

Contents of page
Draw a mediabox on page

Action onLoad
Calls JavaScript routine in Object 3 on opening of document

JavaScript (hmmm)
Run opening document

Cross reference table
<1st Object in this table> <Number of objects in this table>
<byte offset to object in file> <generation number> <flag> (n = in use f = free)

Javascript (beautified)

var Var1=unescape(“…..”);

var Var2= “”;

For (x=128; x>=0; --x) Var2 += unescape(“……”);

Var4 = Var2 + Var1;

Var5 = unescape(“……”);

Var6 = 20;

Var7 = Var6+Var4.length;

while (Var5.length < Var7) Var5+=Var5;

Var8 = Var.substring(0, Var7);

Var9 = Var.substring(0, Var5.length-Var7);

While (Var9.Length+Var7 , 0x40000) Var9 = Var9+Var9+Var8;

Var10 = new Array();

For (y=0; y<1450; y++) Var10[y] = Var9 + Var 4;

until.printf(“%45000.45000f”, 0);

Contains
payload

Payload
appended

Creates NOP
sled

Creates heap
spray

Payload distributed at
regular intervals in

memory

Calls vulnerable routine with Adobe
(CVE-2008-2992) Stack-based buffer

overflow execute arbitrary code

Protecting yourself

Protecting yourself

• Enable automatic updates.

• Disable PDF browser integration.

• Always install the latest patch/update, even for older
Adobe product versions.

• Disable JavaScript.

• Uncheck “Allow non-PDF file attachments with external
applications” to prevent launch action vulnerability.

• Use PDF alternatives such as Foxit, Sumatra, PDF XChange.

Adobe features

• There are features built into Adobe Acrobat and Adobe
Reader that will help you keep your computer safe.

– Protected View

– Protected Mode

• Only available on the Windows version of Acrobat XI or
Reader XI.

Best practise

• A malicious PDF file can only do damage when it can "talk" the
world outside of the PDF file.

• Adobe allows you to prevent that by placing Acrobat or Reader
and the PDF file in question into a "sandbox

• This will separate the PDF file (and any potential malicious code
in it) from the rest of your computer and the world.

• For added security, Acrobat Reader DC contains a protected
mode and protected view to keep your computer safe.

• With Protected Mode enabled, all operations required by
Acrobat Reader DC to display the PDF file are run in a restricted
manner inside a confined environment, the “sandbox.”

Protected mode

• In protected mode, malicious PDF documents can’t launch
arbitrary executable files or write to system directories or
the Windows Registry.

• Enable Create Protected Mode Log File to record events.

– The changes take effect the next time you start the application.

• Click View Log to open the log file.

Protected view

• For additional security and to avoid potential security risks
associated with files that may have originated from unsafe locations,
use the Protected View mode.

– In the Protected View mode, most features are disabled.

– You can view the PDF, but not do much else.

• In the Protected View, a yellow bar displays on top of the Reader DC
window. Click Enable All Features to exit the Protected View.

Reader XI

• "Sandbox Protections" settings

– go to Preferences (Edit>Preferences or Ctrl-K),

– then select the "Security (Enhanced)" category.

– "Enable Protected Mode at Startup"

• make sure that this is checked.

• To be extra cautious, turn on "Protected View"

– disable most features in Reader

• for all PDF files, or

• for files from a potentially unsafe location

– Once viewed and decided it is trustworthy

• Click on the button "Enable All Features"

Acrobat XI vs Reader XI

• With Acrobat XI there is no Protected Mode,

• your only line of defence is the Protected View, which
you'll find in the same location as in Reader XI:

– Open Preferences (Edit>Preferences or Ctrl-K),

– then select the "Security (Enhanced)" category and

– go to the "Sandbox Protections" box.

Summary

Summary

• As PDF support many dynamic features it allows the
opportunity to incorporate malicious code

• It attackers the viewer application and host system

Summary

• You can protect yourself by

Never open unexpected attachments or attachments on
suspicious email

Keep your systems up to date and patched

Using up to date AV software

Summary

• For penetration testers and investigators

Understand the protocols, formats and methodologies
employed within documents and applications

Keep up to date with vulnerabilities, proof of concepts and
exploits

Learn to programme in different languages (Script
languages, Python, C++ etc)

Set-up an isolated environment to learn and develop new
techniques

Penetration testers

Attackers against people work more often than those
against the network layer.

People do not follow best practise and keep everything
patched and up to date

People are naive and make mistakes makes social
engineering a successful attack vector

Investigators

Finding where malware is and how it works, identifies how
attackers got into the network

It identifies what they did once they in

If indicates what damage was done

It is part of GDPR that breaches are investigated so good
job prospects

Any Questions
Hope you enjoyed it

And finally

• Putting together a workshop on the generation of and
reverse engineering of weaponised PDFs in January.

– Provisionally scheduled 19th Jan 2019

• This will be an all day event and will cover

– Creating examples of weaponised PDF

– Testing the weaponised PDF

– and examining real life weaponised PDF file.

Next research project

• Weaponised USB

• Destroy or compromise a computer
using a USB device

